Discrete Structures Fall 2015 Homework#2 Due Tuesday 09/29

Section 1.3 text book

9. Show that each of these conditional statements is a tautology by using truth tables.

 $\begin{array}{lll} \textbf{a)} & (p \wedge q) \rightarrow p \\ \textbf{c)} & \neg p \rightarrow (p \rightarrow q) \\ \textbf{e)} & \neg (p \rightarrow q) \rightarrow p \end{array} \qquad \begin{array}{lll} \textbf{b)} & p \rightarrow (p \vee q) \\ \textbf{d)} & (p \wedge q) \rightarrow (p \rightarrow q) \\ \textbf{f)} & \neg (p \rightarrow q) \rightarrow \neg q \end{array}$

- **14.** Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautol-
- **16.** Show that $p \leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$ are logically equivalent.
- **24.** Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.
- 28. Show that $p \leftrightarrow q$ and $\neg p \leftrightarrow \neg q$ are logically equivalent.

Section 1.4 text book:

12. Let Q(x) be the statement "x + 1 > 2x." If the domain consists of all integers, what are these truth values?

a) Q(0)

b) Q(-1)

c) Q(1)

d) ∃x Q(x)

e) $\forall x Q(x)$ f) $\exists x \neg Q(x)$

g) ∀x¬Q(x)

14. Determine the truth value of each of these statements if the domain consists of all real numbers.

a) $\exists x(x^3 = -1)$ b) $\exists x(x^4 < x^2)$ c) $\forall x((-x)^2 = x^2)$ d) $\forall x(2x > x)$

18. Suppose that the domain of the propositional function P(x) consists of the integers -2, -1, 0, 1, and 2. Write out each of these propositions using disjunctions, conjunctions, and negations.

a) $\exists x P(x)$

b) $\forall x P(x)$ c) $\exists x \neg P(x)$

d) $\forall x \neg P(x)$ e) $\neg \exists x P(x)$ f) $\neg \forall x P(x)$

44. Determine whether $\forall x (P(x) \leftrightarrow Q(x))$ and $\forall x \ P(x) \leftrightarrow$ $\forall x Q(x)$ are logically equivalent. Justify your answer.